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This paper outlines the use of non-conforming (discontinuous) 
elements in the collocation boundary element method for solving 
two-dimensional potential and Poisson type problems. The roots 
of an orthogonal polynomial (shifted Jacobi polynomial) are used 
as the collocation points. This results in increased accuracy due to 
the least square minimization property of the orthogonal polynomi- 
als. The advantage of using non-conforming elements is realized 
when the method is applied (i) to problems with singularities (both 
due to geometry and boundary conditions) and (ii) in conjunction 
with domain decomposition techniques. Also, the collocation points 
can be relocated within an element by changing two user-defined 
parameters in the shifted Jacobi polynomial, thus providing an error 
indicator which can be used for mesh refinement purposes. This 
technique, called the rh method, is discussed and illustrated. The 
results obtained by using non-conforming boundary elements for 
standard test problems are shown to be accurate. © 1995 Academic 
Press, Inc. 

1. INTRODUCTION 

The boundary element method (BEM) is a powerful numeri- 
cal tool used for solving linear elliptical partial differential 
equations [1, 2] since the dimensionality of such problems is 
reduced by one. For example, a 2D/3D object is discretized 
only along its perimeter/surface. The discretization is done by 
dividing the perimeter into small segments called boundary 
elements. The dependent variable is then approximated along 
each element by placing a certain number of nodes. Depending 
on the location of the nodes, the boundary elements get classi- 
fied as conforming (continuous) or non-conforming (discontin- 
uous). Conforming elements are those in which two adjoining 
elements share a common node. Non-conforming elements are 
those in which neighboring elements do not share a common 
node. When using conforming elements in BEM, one has to 
tackle the problem of singularities which can occur due to 
the geometry of the domain or due to the imposed boundary 
conditions. For example, when Dirichlet (D) type boundary 
condition is specified on two elements intersecting at a sharp 
comer, the problem becomes underspecified (more number of 
unknowns than the number of equations) and, hence, the normal 
gradient at the comer cannot be determined uniquely. Also, 
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when mixed boundary conditions (for example, Dirichlet condi- 
tion on an element and Neumann condition (N) on its neigh- 
boring element) are imposed on a smooth boundary, the normal 
gradient becomes undefined at the intersection of these two 
elements. To solve such problems special techniques have to 
be used to resolve the normal gradient at the singular points 
in the case of conforming elements [3-5]. 

The use of non-conforming boundary elements instead of 
the conforming elements is the easiest way to handle such 
complexities. The chief advantage in using such elements is 
that the singularities arising due to geometry and boundary 
conditions can be avoided without compromising on the accu- 
racy of the solution as illustrated in this work. A criticism for 
using non-conforming elements is that the potential is discontin- 
uous at the intersection of two elements. By placing the colloca- 
tion points close enough to the element end points and at optimal 
locations as shown in this work, this error can be minimized. 
The use of non-conforming elements is fully realized when 
BEM is applied along with domain decomposition techniques. 
Domain partitioning is necessary in handling situations where 
the governing differential equation varies in each sub-region. 
For instance if a domain is split into four sub-domains, careful 
bookkeeping is necessary to implement the compatibility condi- 
tions especially at the node corresponding to the point of inter- 
section of all the four domains. By using non-conforming ele- 
ments, this node can effectively be eliminated from the 
computation without sacrificing on the accuracy of the solution. 
Hence, the use of non-conforming elements in BEM offers 
some distinct advantages over conforming elements. 

The piecewise constant approximation (constant elements) 
which belongs to the class of non-conforming elements is 
widely being used in the literature [1, 6, 7]. Some researchers 
have used higher order non-conforming elements to solve elas- 
tostatics [8, 9] and electromagnetic problems [10]. However, 
these works do not provide a concrete strategy for the placement 
of the collocation points within an element. The accuracy of 
BEM strongly depends on the choice of the collocation points. 
An optimal choice would enable one to validate the usefulness 
of non-conforming elements in several new application areas. In 
this study, a rational choice for the placement of the collocation 
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points within an element is provided. This is the first highlight 
of the paper. The roots of an orthogonal polynomial (the shifted 
Jacobi polynomial) are used as the collocation points. The 
provision to generate several sets of collocation points by 
changing two user defined parameters is the major advantage 
in using the shifted Jacobi polynomial. Flexibility to vary the 
collocation points while still maintaining orthogonality is pro- 
vided by this choice. The implementation of this new feature 
for identifying the discretization error, which has not been 
addressed before, is the second highlight of this work. This 
technique is known as the rh method [11] and is useful in 
determining the discretization error and subsequent mesh re- 
finement. The rh method developed here is based on heuristic 
arguments and the technique is demonstrated to be useful but 
cannot be generalized due to the lack of theoretical basis. By 
changing the order of the Jacobi polynomial, the number of 
collocation points can also be changed in an element which is 
similar to the p adaptive technique extensively used in the 
context of finite element analysis [12]. 

In this paper, the non-conforming BEM is implemented for 
the Laplace and linear Poisson type equations. For non-linear 
Poisson type equations, non-conforming elements can be used 
in conjunction with the dual reciprocity method (DRM) [13] 
(closely related to the method of particular integrals). A brief 
description of BEM and DRM is presented in Section 2. The 
difference in conforming and non-conforming elements and the 
choice of collocation points is covered in Section 3. The rh 
method is explained in Section 4. A few illustrative examples 
are presented in Sections 5, 6, and 7. It is shown numerically, 
that the results obtained by this method are very accurate for 
problems in both single and multiple domains. Concluding 
remarks are provided in Section 8. 

tion point. In Eq. (2), G is the fundamental solution for the 
Laplace equation given by 

G =  - l l n ( r ) ,  (3) 

where r is the distance between the source (~¢~, so2) and the field 
(x,, &) points and is given by 

r = N/(x, - so,) 2 + (x2 - so.,) 2. (4) 

The boundary conditions can be of the Dirichlet type (T is 
specified), Neumann type (dT/dn is specified) or Robin type 
(combination of both). Equation (2) can be solved by discretiz- 
ing the boundary into small elements and assigning a particular 
variation of the dependent variable on each element. The re- 
suiting integrals are evaluated numerically by using a 10-point 
Gaussian quadrature, which in most of the cases is sufficiently 
accurate. The discretization results in a system of linear equa- 
tions which can be solved for the boundary unknowns by using 
a routine equation solver. 

For Poisson type equations the treatment is slightly different. 
Consider the generalized Poisson type equation, 

V2T = b, (5) 

where b is called the forcing function, which can be a constant 
or a function of spatial variables and/or the dependent variable, 
T. When the Green-Gauss theorem is applied to Eq. (5), a 
domain integral corresponding to the forcing function still re- 
mains in the integral formulation. Thus the RHS of Eq. (2) is 
no longer zero but given by 

2. BOUNDARY ELEMENT METHOD 

The main idea behind the BEM is to convert the governing 
differential equation to an equivalent integral equation. The 
details of the method can be found in [1, 2, 7, 14]. Consider 
the Laplace equation, 

V2T = 0, (1) 

where V'- denotes the Laplacian and T the dependent variable. 
By applying the Green-Gauss theorem and collocating at the 
source point i, Eq. (1) can be expressed as the integral equation, 

(c or_ r 
fr \ On -~n / dF - diTi = 0, (2) 

where di is a coefficient which depends on the location of the 
source point i on the boundary, F is the boundary of the object 
and n is the outward normal direction. This is the collocation 
representation of the BEM, where i is also called as the colloca- 

RHS = fn Gb dO, (6) 

where lq is the domain under consideration. There are several 
ways to handle this domain integral. Of them, the dual reciproc- 
ity method (DRM) [15] is the most popular technique. In DRM, 
the domain integral is transferred to an equivalent boundary 
integral by approximating the forcing function b over the entire 
domain using suitable basis functions. For this purpose, certain 
number of internal nodes are required along with the usual 
number of boundary nodes as in regular BEM. The details of 
the method are not discussed here for brevity and can be readily 
found in [15, 16]. 

In this work, we also consider a Poisson type equation of 
the diffusion-reaction type, i.e., 

V'-c = 4~2c ", (7) 

where c is the concentration of the diffusing species, ~b is a 
parameter proportional to the ratio of the reaction rate constant 
to the diffusion coefficient, and n is the order of the reaction. 
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FIG. 1. Difference in node location for conforming and nonconforming 
(cubic) elements in domain decomposition. 

For linear problems, i.e., 1l = 1, the use of  special fundamental 
solution of  the form 

1 g0(V'-~r) (8) G, , r  = 

reduces the problem to boundary only formulation [17]; i.e., 
the problem can be solved by regular BEM without any internal 
nodes. We use this technique for case study 3 in Section 5. For 
non-linear problems, i.e., n ¢- 1, the DRM is used to solve the 
diffusion-reaction equation as illustrated in Section 7. 

If the governing partial differential equations vary from re- 
gion to region in a given domain, then it is necessary to use sub- 
domain (domain decomposition) techniques. A typical situation 
arises in solving the heat conduction problem with variable 
thermal conductivity in different regions of  the domain. Another 
example occurs in solving the diffusion reaction equation in 
a porous catalyst particle, where a Poisson type equation is 
applicable in the region containing active catalyst and the La- 
place equation is applicable in the inert region. In such situa- 
tions, the domain is partitioned into sub-regions and the BEM 
is applied to each of  these regions separately. 

The handling of  the variables at the interfacial nodes is crucial 
in such problems and the use of  non-conforming elements 
reduces the amount of bookkeeping considerably. For instance, 
the resolution of  the normal gradient at the intersection of  
more than two subdomains poses a problem when conforming 
elements are used. Figure 1 shows the difference in discretiza- 
tion by using conforming and non-conforming elements when 
a domain is divided into four subregions, An example to illus- 
trate the use of  non-conforming BEM in solving the Laplace 
equation in multiple domains is presented in Section 5 as part 
of  the case studies. 

FIG. 3. 

D N 

Singularities due to (al geometry and (b) boundary conditions. 

3. TYPES OF ELEMENTS 

Depending upon the nature of approximation, the boundary 
elements acquire the name of  constant, linear, quadratic, cubic 
element, etc. Figure 2 shows typical higher order conforming 
elements with the above-mentioned variation of  the dependent 
variable over the length of the element. In many practical cases 
higher order elements are often used to accurately represent 
(i) a curved boundary and (ii) the variation of the dependent 
variable over an element. In conforming elements, the colloca- 
tion points are necessarily placed at the element end points. 
This acts to the disadvantage of the conforming elements as 
the singularities resulting from the geometry and the boundary 
conditions essentially leave the normal gradient unresolved at 
those points. Figure 3 shows two such situations. 

Figure 3a shows a case of singularity due to the intersection 
of two elements with Dirichlet boundary condition at a sharp 
comer. This situation is called the D-D singularity, where the 
normal gradient is not uniquely defined at the point of singular- 
ity. Figure 3b shows a case of singularity arising due to the 
imposition of Dirichlet boundary condition on one element and 
Neumann boundary condition on the next element. This is 
called the D-N singularity and the normal gradient does not 
exist at the point of singularity. Usually special techniques are 
needed to handle such singularities when conforming elements 
are used. 

The use of  non-conforming elements offers a simple solution 
to overcome these difficulties. Figure 4 shows the node place- 
ment for such elements. The choice of the location of  the nodes 
which is an important feature of  this paper is presented in the 
following sub-section. The manner in which the singularities 
are avoided by using non-conforming elements is illustrated in 
Figs. 5a and b. 

3.1. Choice of Collocation Points 

A rational choice for placing the collocation points in non- 
conforming elements is not available in the literature. Villadsen 
and Michelsen [ 18] discuss the basics of collocation methods 

C- 
Linear 

I • ~= -'', 
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Quadratic Cubic 
I : -- -- I ,  : : --~ 

Quadratic Cubic 

FIG. 2. Examples of conforming elements. FIG. 4. Examples of non-conforming elements. 
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Handling of singularities by non-conforming elements. 

as applicable to ordinary differential equations. They point out 
that when the collocation points are optimally placed in an 
interval, the performance of the collocation method is equal to 
or better than other weighted residual techniques. Since the 
roots of  an orthogonal polynomial are chosen as the collocation 
points, they call the method an orthogonal collocation. The 
orthogonal expansion of  a given function minimizes the mean 
square error when the series is terminated after a finite number 
of  terms [19]. Mathematically, if g(x) is the function being 
interpolated by a set of  polynomials q~i(x) of  degree n, then the 
least square error defined over an interval [a, b] as 

( ) fl w(x) g x)- (9) 
i=0 

is a minimum only if ~bi(x) are orthogonal to each other with 
respect to the weighing function W(x). Here ci are the coeffi- 
cients of  the appropriate orthogonal expansion of g(x) in terms 
of ~bi(x). In Eq. (9), n denotes the order of  the polynomial (i.e., 
n + 1 collocation points). When the limits of  integration, a 
and b, are taken to be 0 and 1, respectively, and the polynomials 
~bi(x) are orthogonal with respect to W(x) = 1, then ~b~(x) are 
called shifted Legendre polynomials. For those cases when 
~b~(x) are orthogonal with respect to W(x) = x~(1 - x) ~ (where 
0 -< x -< 1 and or, /3 > - 1 ) ,  they are called shifted Jacobi 
polynomials. Notice that Legendre polynomials are a special 
case of  Jacobi polynomials, when (a , /3)  = (0, 0). 

In this work, the roots of  the shifted Jacobi polynomials, 
P~q)(x) are chosen as the collocation points on an element in 
BEM and, therefore, the current procedure can be called the 
orthogonal collocation BEM. Consider the expansion of the 
dependent variable in terms of shifted Jacobi polynomials as 

T = coP~o~'a)(x) + cl P~'~)(x) + c2P~'a)(x) 

+ c3P~a'13)(x) + c4Pt4a'l~)(x) + . . . .  

of orthogonal polynomials (hence, different sets of  collocation 
points) can be generated. This can further be used fruitfully in 
the a posteriori error estimation studies. 

The polynomials, P~a'~)(x), can be generated by using the 
Rodrigues'  formula (see, for example, [20, 21]), 

(1 - x)"xaP~'a)(x) = ( -  IY' F(/3 + 1) d" 
" r '(n + / 3  + 1) 

x [(I - x ) " + ~ ' x " + ' q ,  

(11) 

where F is the gamma function and n is the order of  the 
polynomial. Table I shows the roots of  the shifted Jacobi poly- 
nomial of  order 4 for different combinations of  ot and/3. 

By varying the values of  a and/3, the roots (and, hence, the 
collocation points) can be weighted towards either one or the 
other end of the element. As observed from Table I, different 
values of  or and/3 give different node locations in the normalized 
interval (0, 1). For example, for o~ = 0 and/3 = 4, the nodes 
are placed close to x = I. But for a = /3 = 4, the first and 
the last nodes are placed away from the two end points, whereas 
for ot = / 3  = - 0 . 5  they are placed close to the end points. In 
this study, (a , /3)  = (0, 0) is used for placing the collocation 
points and we call this the base case. Changing (or,/3) from 
(0, 0) to say (1, 1), yields another set of  collocation nodes. 
Comparison between the solutions obtained from the node con- 
figuration resulting from these two sets of  (a , /3)  provides with 
an error indicator for each element as shown in the next section. 

3.2. hzterpolating Functions 

The interpolating functions used to approximate the depen- 
dent variable for each element is represented by the Lagrangian 
form. We use cubic elements for all our computation because 
they represent the variation of the dependent variables more 
accurately than lower order elements [20]. Isoparametric trans- 

TABLEI 

RootsoftheShifledJacobiPolynomial,  P~ "~) 

a /3 Roots a /3 Roots 

(10) 0.0 

For a cubic approximation ofT,  the series in the RHS of Eq. (I0)  
is truncated after the first four terms. The truncation error intro- 

1.0 
duced is then the term corresponding to P~4~'a)(x). This error 
can be forced to zero at four points in the interval by setting 
the collocation points as the roots of  P~'~'al(x) = 0. This provides 
for a superconvergence at the collocation points since the trun- 
cation error is zero at these points. Hence the truncated version 0.0 
of  Eq. (I0) is the " b e s t "  cubic approximation to the dependent 
variable. Also, by changing the parameters (or, fl), different sets 

0.0694 0.0381 
0.0 0.3300 -0 .5  -0 .5  0.3087 

0.6700 0.6913 
0.9306 0.9619 

0.1175 0.2013 
1.0 0.3574 4.0 4.0 0.3962 

0.6426 0.6038 
0.8825 0.7987 

0.3121 0.0373 
4.0 0.5789 4.0 0.0 0.1871 

0.8129 0.4211 
0.9627 0.6879 
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formation is used to relate the positional variable in the actual 
domain to the standard domain ("0 coordinate system, where "0 
is the dimensionless arc length). The Lagrangian form of the 
interpolation functions for cubic elements in the standard do- 
main, where 0 -< "0 <- 1, are given by 

( " 0 -  "02)("0- "03)("0- "04) qS, = (12) 
( "01 -  "02)("01- "03)("01- "0.1) 

4~ 2 = ( " 0 -  "0_0('0- "04)("0- "0,) (13) 
("02- "03)("02 - "04)("0z- rh) 

th3 = ('0 - "04)("0- "0~)("0- "02) (14) 
( "03-  "04)("03- "01)("03- "02) 

4) 4 = ( " 0 -  r h ) ( ' 0 -  '02)("0- "03) (15) 
( "04-  "01)("04- "02)("04- "03) 

where r h, '0> "03, "04 are the collocation points obtained from 
the solution of  the shifted Jacobi polynomial with n = 4, as 
shown in Table I. The dependent variable is then represented 
in terms of  the interpolating functions as 

T =  gb, T, + ~T2  + ~b3~ + ~T4 ,  

where T~ (i = 1, 4) are the values of  the dependent variable at 
the collocation nodes. 

In this work, the geometry of an element is approximated 
in an optimal way (in the least square sense), by using the same 
isoparametric representation as described for the dependent 
variable, i.e., 

4 
x=Z 4,ix, 

i=l 

4 
y :  ~__,, gbiYi. 

i=1 

In describing the geometry of  an element, one can use a super- 
parametric representation (six nodes including the element end 
points), instead of  the isoparametric representation given in 
Eqs. (17) and (18). Such a representation ensures inter-element 
continuity and, hence, improved accuracy. However, it is shown 
in Section 5 that the isoparametric representation is sufficiently 
accurate to describe the element geometry for the kind of  dis- 
cretization used in this work. 

With this prescription of  the collocation nodes and the inter- 
polation functions, the collocation version of  the integral equa- 
tion (2) is discretized in a traditional manner. 

4. THE rh METHOD 

Theoretical convergence analysis in collocation boundary 
element method with conforming elements is very limited [23]. 
For piecewise constant collocation some convergence results 

Pl 
I =..7, 

0.0 ! 

i 
I • 

0.0 C I 

(a,D = (o,o) 

P2 P3 

++ 
C2 C3 

(~t,l~) = (IA) 

P4 
ol [ 

1.0 

+ 
I 

C4 1.0 

FIG. 6. The rh technique: • are the collocation points and O are the 
projected points for error estimation. 

are available [24-27]. For higher order elements the conver- 
gence analysis is still under active investigation. In this study 
we use an empirical approach to estimate the discretization 
error and to use that information for mesh refining purposes. 

An advantage in using higher order non-conforming elements 
is that, for the same mesh configuration, different sets of solu- 
tions can be generated by changing the two parameters (o~,/3). 

(16) The rh method uses this concept to get an insight for a possible 
mesh refinement. In this work, we provide a criteria for the 
mesh refinement based on an element level error indicator. The 
error indicator proposed in this work is based on the difference 
between two solutions obtained by changing the parameters 
(or,/3). For this purpose, we use (c~,/3) = (0, 0) and (1, 1). The 
choice of  (o~,/3) is not unique; for example, one can use ( -0 .5 ,  
- 0 . 5 )  or (2, 2) or any other combination. We use (1, 1) because 
the collocation points of  this combination are not located far 

(17) away from those of the base case (0, 0). The solution obtained 
by (o~,/3) = (0, 0) is used to project solutions at those points 
which are the collocation points corresponding to (or,/3) = 

(18) (1, 1) as shown in Fig. 6. 
This projected solution is compared with the computed solu- 

tion of (o~,/3) = (1, 1) in a least square sense. The root mean 
square (RMS) error, e, is given as 

e = ~ (  12(Pi-C)2)i (19) 

where, Pi and Ci are the projected and the calculated values of  
the dependent variable at the collocation points corresponding 
to (or,/3) = (1, 1). An indicator of  error, e, for an individual 
element is defined as 

= le, (20) 

where l is the chord length of  the element which acts as a 
weighting parameter. A tolerance limit is set on this indicator, 
e, for the refinement process to stop. The method developed 
here closely follows the concept developed by Guiggiani [11]. 
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TABLE II 

Normal Gradients along CD and DE for the Dirichlet Problem in 
an L-Shaped Domain 

x y Numerical Analytical 

0.9653 0.5000 0.4286 0.4285 
0.8350 0.5000 0.3862 0.3863 
0.6650 0.5000 0.3214 0.3216 
0.5347 0.5000 0.2657 0.2656 
0.5000 0.5347 1.0066 1.0061 
0.5000 0.6650 1.0790 1.0790 
0.5000 0.8350 1.2017 1.2017 
0.5000 0.9653 1.3198 1.3192 

FIG. 7. Geometric singularity; Dirichlet conditions at the boundary means 
that the normal gradients at the comer nodes are not uniquely defined. 

Guiggiani uses conforming quadratic elements with the location 
of  only the center node altered to generate two sets of  solutions. 
The comparison of these two solutions through an /4_ norm 
provides element level error indicators. However, the relocation 
of the center node involves some empiricism and Guiggiani 
also reports non-physical oscillation in the solution when truly 
non-conforming elements are used. In the present work we use 
the cubic non-conforming elements with the position of  all the 
four collocation nodes being altered. Again the error is com- 
pared in a least square sense. No empirical factors are involved 
in the choice of  collocation nodes and we do not observe any 
oscillatory behavior in the solution, at least for the class of  
problems considered here. 

5. CASE STUDIES 

In this section, some typical examples are provided to demon- 
strate the performance of  the non-conforming elements. The 
handling of  singularities is shown through the comparison of  
the results with known standards. Laplace and linear diffusion- 
reaction equations are illustrated in detail since they require 
discretization along the boundary only. Non-linear problems 
can be solved similarly by using non-conforming elements in 
combination with DRM and a brief illustration is presented in 
Section 7. 

Case 1: Geometric Singularity 

A case of  geometric singularity is illustrated here by the 
study of  an L-shaped domain with a re-entrant comer (270°), 
where the normal gradient has no unique value. Figure 7 shows 
the geometry of  the domain. In order to test the use of  non- 
conforming elements a Dirichlet problem with a smooth solu- 
tion is considered. Thus a harmonic function 

u = sin(x) cosh(y) (21) 

is used as the Dirichlet boundary conditions so that the numeri- 
cal solution can be compared with the exact solution. Note that 
one could have prescribed boundary conditions such that the 
normal gradient is infinite at the re-entrant comer. We show 
a similar situation in Case Study 3 when dealing with D-N 
singularities. For the present example smooth solution is chosen 
in order to illustrate the treatment for a D-D comer singularity. 
In the classical BEM special techniques need to be used to 
resolve the gradient at the comers formed by the intersection 
of  the two elements [7]. In this work, six cubic non-conforming 
elements (one on each side) are used to discretize the boundary. 
The normal gradients are calculated along the boundary and a 
few values are shown in Table II along with the exact solution. 
The accuracy obtained in the prediction of  the normal gradients 
makes this method very powerful in handling problems with 
geometric singularities. Note that the discretization is the mini- 
mum needed to capture the geometry of the domain. The domain 
has six sides and only six elements are used. The normal gradi- 
ents match the analytical solution within roundoff, which is an 
indication of  the effectiveness of  this method. 

The normal gradient at the re-entrant comer D in Fig. 7 is 
considered for further study. From the analytical solution the 
normal gradient tends to 0.25 when approached from CD and 
tends to 1.0 when approached from ED. The numerical solution 
obtained by using six cubic non-conforming elements is extrap- 
olated to get the value of  the normal gradient at the point D. 
Table III gives these results for three sets of  (o~,/3). Since all 
of  them give almost the same solution, it is safe to conclude 

TABLE III 

Value of the Normal Gradient at the D-D Singularity when 
Approached from CD and ED for Different Values of (~, 13) 

From (0, 0) (1, 1 ) ( -  0.5, -0.5) Analytical 

CD 0.250 0.249 0.248 0.25 
ED 0.990 0.990 0.990 1.00 
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FIG. 8. Condition number of the resultant coefficient matrix for Case 1 
using conforming cubic elements (equispaced nodes) and nonconforming cubic 
elements (~ = /3 = 0). as seen from Table IV. For comparing the numerical results, 

the harmonic function, 

that the level of discretization is sufficiently accurate for the 
given problem. 

In order to use the method for problems which require very 
fine discretization the stability of  the assembled matrix has to 
be examined. For that purpose, the condition number of the 
assembled coefficient matrix in BEM for this problem is com- 
puted and plotted as a function of  the number of collocation 
nodes. 

It is clear from Fig. 8 that as the number of  nodes increases, 
the condition number of  the matrix also increases. However, 
for the same number of nodes used, the condition number of  
the matrix for non-conforming elements is lower than that of 
conforming elements. This suggests that the stability of  the 
system is not sacrificed by the non-conformal placement of the 
nodes. The maximum number of  nodes examined in this study 
is 768, which represents a fairly large boundary element mesh. 
If  the condition number becomes prohibitively large then the 
problem can be solved using domain decomposition techniques 
with a lesser number of  elements in each subdomain. 

Case 2: Geometric Singularity due to Domain Partitioning 

Bialecki et al. [28] used the "Mercedes star" problem to 
illustrate the use of  hypersingular equations in BEM with three 
sub-domains. We use the same problem to test the numerical 
method developed here. The geometry of  the domain is shown 
in Fig. 9. In all the three sub-domains, the Laplace equation 
(heat conduction with unit thermal conductivity) is solved with 
matching interfacial conditions. Six cubic non-conforming ele- 
ments are used to discretize each domain. As mentioned before, 
we use the isoparametric representation to describe the geome- 
try of the domain. For the given boundary discretization this 
does not introduce significant error in describing the perimeter 

t,I = X 3 -- 3xy 2, (22) 

is taken as the boundary condition. Dirichlet boundary condi- 
tions are imposed on the external boundary. For this sub-domain 
problem, boundary conditions on the common boundaries are 
arbitrarily specified initially and iterated until the converged 
solution is obtained. On one side of  a common boundary, say, 
for example, F~.,, Dirichlet boundary condition is imposed for 
sub-domain 1 to start the iterations. On the other side of the 
same boundary the Neumann condition is imposed for sub- 
domain 2. This way of  assigning the boundary conditions is 
called the alternating D-N conditions and has been used success- 
fully in the iterative solution of  domain decomposition problems 
[29]. The boundary conditions for F~3 and F~ are imposed in 
a similar manner. For each iteration, the potential and the normal 
gradient are updated as 

T ~"1 = (1 - O ) T I P ' +  OT I'', (23) 

where T is the dependent variable (potential or the flux), 0 is 

TABLE IV 

Isoparametric and Actual Values of the End Points of Elements 1 
and 2 in Fig. 9 

Element (x v) computed (x, y) actual 

1 (5.996, 0.002) (6.000, 0.000) 
(2.996, 5.194) (3.000, 5.196) 

2 (2.999, 5.192) (3.000, 5.196) 
( - 2.999, 5.192) ( - 3.000, 5.196) 
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TABLE V 

Mercedes Star Problem: Comparison of the Numerical Solution 
with Exact Analytical Solution along the Interface F~.~. 

Potential Gradient 

x y Numerical Analytical Numerical Analytical 

--2.896 5.016 194.011 194.285 0.0029 0.0000 
-2 .505 4.339 125.810 125.752 0.0004 0.0000 
-1 .995 3.455 63.576 63.521 0.0005 0.0000 
-1 .604 2.778 33.045 33.021 -0 .0002 0.0000 
-1 .396 2.418 21.778 21.760 0.0003 0.0000 
--1.005 1.741 8.125 8.121 0.0000 0.0000 
-0 .495 0.857 0.966 0.970 0.0000 0.0000 
-0 .104 0.180 0.002 0.009 -0.0003 0.0000 
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the relaxation factor, (n) is the value at the next iteration, (p) 
is the value at the previous iteration, and (c) is the calculated 
value at the current iteration. Thus the procedure is an iterative 
method involving solution of one sub-domain at a time. Detailed 
discussion of the sub-domain iterative procedure is not pre- 
sented here as this is not the theme of the paper. The converged 
results are shown in Table V. The value of the potential and 
the associated flux when projected to the point of singularity, 
i.e., (0, 0) is -0.0077 and -0.0005, respectively. This is very 
close when compared to the exact solution of 0.0 and 0.0 and 
is accurate by orders of magnitude to the solution obtained by 
the hypersingular equation method [28]. 

Case 3: Singularity Due to Boundary Condition 

Non-conforming elements can be successfully used in solv- 
ing problems with singularities arising due to boundary condi- 
tions. As an example, the problem of linear diffusion reaction 
in a catalyst particle is solved with mixed boundary conditions 
on one side of the particle. This problem has been solved before 
by many researchers and has been a benchmark in testing out 
new numerical techniques [30, 31, 17]. The geometry of the 
problem along with the boundary conditions is illustrated in 
Fig. 10. The governing differential equation is given by Eq. (7) 

D No Flux C 

A E i'///I//I///I/l/lll//////////B 
c = 1.0 No Flux 

FIG. 10. Singularity at node E due to mixed boundary conditions for the 
diffusion-reaction problem. 

FIG. 11. The discontinuity of the normal gradient at point E; five cubic 
elements were used along AE and EB. 

with n = 1. A value of 4, = I0 (which means steep concentration 
profiles) is used in this simulation. Regular BEM is used to 
solve this problem with special fundamental solution (Eq. (8)) 
as explained in Section 2. Ramachandran [17] has illustrated 
the use of special elements in the vicinity of the singularity to 
obtain accurate solution. The use of non-conforming elements 
obviates all the difficulties involved in tackling such problems 
without any loss in accuracy. Sixteen cubic elements are used 
to discretize the boundary, with eight of them in the vicinity 
of the singular point. Fig. 11 shows the normal gradient profile 
along the side AE. Note that the normal gradient at the point 
E is not defined and the use of non-conforming elements effec- 
tively eliminates the need to compute the gradient at that point. 

6. ILLUSTRATION OF THE rh METHOD 

As an example, the problem of boundary condition singular- 
ity (Case 3) is solved with rh mesh refinement to illustrate 
the methodology. As discussed earlier, the point E in Fig. 10 
represents a case of singularity where the normal gradient is 
not defined. 

To represent the variation of the normal gradient along the 
line segment AE, the mesh has to be finely graded near the 
singular point, E. Figure 12 shows the step wise grading of the 
mesh along AE, in conjunction with the result obtained by the 
procedure discussed in Section 4 and the improvement of the 
solution is illustrated in Fig. 13. Notice that the error indicator 
e is initially high (0.18) when only one element is used. As 
the first refinement is made and the element AE is broken into 
two elements of 0.4 and 0.1 lengths (larger element towards 
A), 8 drops to 0.006 in the larger element (which is farther 
from the singularity) and 0.071 in the smaller element. Since 
we had set an arbitrary tolerance of 0.015 for the refinement 
process to stop, the smaller element alone is refined into two 
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The "rh" mesh refinement of the side AE in Fig. 10. 

elements in DRM. First the linear problem (n = 1 in Eq. (7)) 
is solved with only two boundary elements along A E  (the second 
configuration in Fig. (12)). Thirty internal nodes are placed 
(mostly near the singularity). The effectiveness factor r/ as 
defined in Eq. (24) is calculated to be 0.05466. This is very 
close to the result shown in stage 2 of Fig. 13. Now the same 
concept can be extended to non-linear problems as well. For 
example, when we consider n = 2 in Eq. (7), we obtain an 
effectiveness factor of 0.04549. The use of non-conforming 
elements in DRM is not restricted in solving the non-linearities 
in reaction rate alone. Particularly for convect ion-diffusion-  

reaction problems and sub-domain DRM problems, the tech- 
nique developed here could be of great use. 

8. CONCLUSION 

elements of 0.06 and 0.04 lengths each. Again, e drops dramati- 
cally in the broken element farther from the singularity. This 
procedure is repeated until e is within the set tolerance in all 

the elements. The effectiveness factor, r/, defined as 

,f r / =  ~-~5 " r P d F ,  (24) 

is an important design parameter in catalysis. Here, ~ is the 
area of the object considered, F is the enclosing boundary, and 
p is the normal concentration gradient. As the mesh is refined, 
it can be seen from Fig. 13 that the effectiveness factor con- 

verges to the solution obtained by other methods in the literature 

[31, 17]. 

7. NON-LINEAR P R O B L E M S  

Non-conforming elements can also be used in the DRM for 

solving non-homogeneous and non-linear problems. A brief 
description of DRM was provided in Section 2. Here, we solve 
the case study 3 again, to test the accuracy of non-conforming 

Elements E: rl 

I 0.180 0.05428 

2 0.006 0.071 0.05488 

3 0.006 0.003 0.044 0.05498 

fT,/  
4 0.006 0.001 0.002 0.022 0.05504 

,/-- f 7 
5 0.006 0.001 0.001 0.001 0.012 0.05505 

FIG. 13. The error indicator e for each element along AE in Fig. 10. 

In this paper, it is shown that the singularities arising due 
to the geometry and boundary conditions in Laplace and Poisson 
type problems can be successfully handled by using non-con- 
forming boundary elements. A systematic basis for the choice 

of the collocation points is provided. The D-D and D-N singu- 
larities are circumvented without any special treatment. The 
accuracy of the method is demonstrated for both regular and 
sub-domain BEM as well as DRM. The amount of book-keep- 
ing in sub-domain BEM is reduced by using non-conforming 
elements. The option to change the placement of the collocation 

points with a change in the parameters o~ and/3 results in the 
generation of two (or more) solutions for the same level of 
discretization. This in turn is used in the error estimation studies. 
Disadvantages of non-conforming elements indicated in the 
literature are not seen from our computation. We believe that 
the method has potential in 3D simulation for problems in heat 

transfer and fluid mechanics. 
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